- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kidane, Dawit (2)
-
Sobitan, Adebiyi (2)
-
Teng, Shaolei (2)
-
Buhari, Nosimot (1)
-
Mahase, Vidhyanand (1)
-
Qin, Hong (1)
-
Shi, Xinghua (1)
-
Tang, Qiyi (1)
-
Wen, Fayuan (1)
-
Yao, Qiaobin (1)
-
Youssri, Zainab (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background/Objectives: Somatic and genetic mutations in glutathione peroxidases (GPxs), including GPx7 and GPx8, have been linked to intellectual disability, microcephaly, and various tumors. GPx7 and GPx8 evolved the latest among the GPx enzymes and are present in the endoplasmic reticulum. Although lacking a glutathione binding domain, GPx7 and GPx8 possess peroxidase activity that helps the body respond to cellular stress. However, the protein mutations in these peroxidases remain relatively understudied. Methods: By elucidating the structural and stability consequences of missense mutations, this study aims to provide insights into the pathogenic mechanisms involved in different cancers, thereby aiding clinical diagnosis, treatment strategies, and the development of targeted therapies. We performed saturated computational mutagenesis to analyze 2926 and 3971 missense mutations of GPx7 and GPx8, respectively. Results: The results indicate that G153H and G153F in GPx7 are highly destabilizing, while E93M and W142F are stabilizing. In GPx8, N74W and G173W caused the most instability while S70I and S119P increased stability. Our analysis shows that highly destabilizing somatic and genetic mutations are more likely pathogenic compared to stabilizing mutations. Conclusions: This comprehensive analysis of missense mutations in GPx7 and GPx8 provides critical insights into their impact on protein structure and stability, contributing to a deeper understanding of the roles of somatic mutations in cancer development and progression. These findings can inform more precise clinical diagnostics and targeted treatment approaches for cancers.more » « lessFree, publicly-accessible full text available December 31, 2025
-
Mahase, Vidhyanand; Sobitan, Adebiyi; Yao, Qiaobin; Shi, Xinghua; Qin, Hong; Kidane, Dawit; Tang, Qiyi; Teng, Shaolei (, Viruses)The global effort to combat the COVID-19 pandemic faces ongoing uncertainty with the emergence of Variants of Concern featuring numerous mutations on the Spike (S) protein. In particular, the Omicron Variant is distinguished by 32 mutations, including 10 within its receptor-binding domain (RBD). These mutations significantly impact viral infectivity and the efficacy of vaccines and antibodies currently in use for therapeutic purposes. In our study, we employed structure-based computational saturation mutagenesis approaches to predict the effects of Omicron missense mutations on RBD stability and binding affinity, comparing them to the original Wuhan-Hu-1 strain. Our results predict that mutations such as G431W and P507W induce the most substantial destabilizations in the Wuhan-Hu-1-S/Omicron-S RBD. Notably, we postulate that mutations in the Omicron-S exhibit a higher percentage of enhancing binding affinity compared to Wuhan-S. We found that the mutations at residue positions G447, Y449, F456, F486, and S496 led to significant changes in binding affinity. In summary, our findings may shed light on the widespread prevalence of Omicron mutations in human populations. The Omicron mutations that potentially enhance their affinity for human receptors may facilitate increased viral binding and internalization in infected cells, thereby enhancing infectivity. This informs the development of new neutralizing antibodies capable of targeting Omicron’s immune-evading mutations, potentially aiding in the ongoing battle against the COVID-19 pandemic.more » « less
An official website of the United States government
